首页 > 试卷 > 教材同步 > 高考复习知识点

高一数学学哪些内容

  高一数学学习什么

  高一上学期有的地方是学习必修一和必修四,必修一的主要内容是《集合》、《函数》,必修四的主要内容是《三角函数》、《向量》。但是有些地方是学习必修一和必修二,必修二的主要内容是《立体几何》,简单的《解析几何》。如初中所学习的直线方程,园的方程以及他们的一些性质关系等。

  在高一上学期,必修一是一定要学的,函数这一章一定要学好,它包括函数的概念,图像,性质以及一些基本函数,如二次函数,指数函数,对数函数,幂函数等。

  必修三中的内容要简单一些,包括《统计初步》、《算法》、《概率》。除 了算法外,其他内容我们在初中都已经接触过。

  到了高二要学习必修五,主要内容是《数列》,《不等式》等,对于我们在高一学习的解析几何,到了高二还要学《圆锥曲线》等。当然,函数与导数,参数方程与极坐标也应该是高二学习的内容。地方不同,还有些选学的内容也不同。

  2

  高一数学必背知识点有哪些

  【第一章:集合与函数概念】

  一、集合有关概念

  1.集合的含义

  2.集合的中元素的三个特性:

  (1)元素的确定性如:世界上的山

  (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

  (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

  3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  (2)集合的表示方法:列举法与描述法。

  注意:常用数集及其记法:XKb1.Com

  非负整数集(即自然数集)记作:N

  正整数集:N*或N+

  整数集:Z

  有理数集:Q

  实数集:R

  1)列举法:{a,b,c……}

  2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2}

  3)语言描述法:例:{不是直角三角形的三角形}

  4)Venn图:

  4、集合的分类:

  (1)有限集含有有限个元素的集合

  (2)无限集含有无限个元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  二、集合间的基本关系

  1.“包含”关系—子集

  注意:有两种可能

  (1)A是B的一部分,;

  (2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实

  例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

  即:

  ①任何一个集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AíB,BíC,那么AíC

  ④如果AíB同时BíA那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  4.子集个数:

  有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集

  三、集合的运算

  运算类型交集并集补集

  定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.

  由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).

  【第二章:基本初等函数】

  一、指数函数

  (一)指数与指数幂的运算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.

  当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

  当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

  注意:当是奇数时,当是偶数时,

  2.分数指数幂

  正数的分数指数幂的意义,规定:

  0的正分数指数幂等于0,0的负分数指数幂没有意义

  指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

  3.实数指数幂的运算性质

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

  注意:指数函数的底数的取值范围,底数不能是负数、零和1.

  2、指数函数的图象和性质

  【第三章:第三章函数的应用】

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

  方程有实数根函数的图象与轴有交点函数有零点.

  3、函数零点的求法:

  求函数的零点:

  (1)(代数法)求方程的实数根;

  (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

  4、二次函数的零点:

  二次函数.

  1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

  3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

  3

  学好高中数学的方法是什么

  1、重视基础

  想要学好高中数学,首先就是要掌握好基础,基础知识都在课本中,所以,学习高中数学的第一个方法就是掌握好课本中的知识点。当运用的多了,就灵活了。同样熟悉了知识,便能提高数学成绩了。

  2、总结归纳

  真理是需要在实践中获得的,在各种各样的题目中,难免会有做错的情况出现。同一个类型的题目,这次错了不要拍,注意总结归纳,下次就自然不会再错了。高中数学的学习是有规律的,我们可以从练习册、课本例题中总结,还有一些重点易错的题型,更是要重点留意。

  3、上课认真听课

  上课是掌握和理解数学基础知识的重要环节,所以高中生在上课的时候要认真听讲。如果有时间的话,可以在课前预习一下这节课要学的知识。这样在听课的时候就会更加认真的听课,知道什么地方该详细,什么地方可以略过,这样才不会顾此失彼,手忙脚乱。

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/shijuan/jctb/fuxi/16850.html

[!--temp.pl--]

热门文章

最近发表

标签列表