首页 > 试卷 > 教材同步 > 高考复习知识点

三角函数诱导公式

  三角函数诱导公式有哪些

  终边相同的角的同一三角函数的值相等。

  设α为任意锐角,弧度制下的角的表示:

  sin (α+k·360°)=sinα(k∈Z).

  cos(α+k·360°)=cosα(k∈Z).

  tan (α+k·360°)=tanα(k∈Z).

  cot(α+k·360°)=cotα (k∈Z).

  sec(α+k·360°)=secα (k∈Z).

  csc(α+k·360°)=cscα (k∈Z).

  π+α的三角函数值与α的三角函数值之间的关系。

  设α为任意角,弧度制下的角的表示:

  sin(π+α)=-sinα.

  cos(π+α)=-cosα.

  tan(π+α)=tanα.

  cot(π+α)=cotα.

  sec(π+α)=-secα.

  csc(π+α)=-cscα.

  角度制下的角的表示:

  sin(180°+α)=-sinα.

  cos(180°+α)=-cosα.

  tan(180°+α)=tanα.

  cot(180°+α)=cotα.

  sec(180°+α)=-secα.

  csc(180°+α)=-cscα.

  任意角α与 -α的三角函数值之间的关系:

  sin(-α)=-sinα.

  cos(-α)=cosα.

  tan(-α)=-tanα.

  cot(-α)=-cotα.

  sec(-α)=secα.

  csc (-α)=-cscα.

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  弧度制下的角的表示:

  sin(π-α)=sinα.

  cos(π-α)=-cosα.

  tan(π-α)=-tanα.

  cot(π-α)=-cotα.

  sec(π-α)=-secα.

  csc(π-α)=cscα.

  角度制下的角的表示:

  sin(180°-α)=sinα.

  cos(180°-α)=-cosα.

  tan(180°-α)=-tanα.

  cot(180°-α)=-cotα.

  sec(180°-α)=-secα.

  csc(180°-α)=cscα.

  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

  弧度制下的角的表示:

  sin(2π-α)=-sinα.

  cos(2π-α)=cosα.

  tan(2π-α)=-tanα.

  cot(2π-α)=-cotα.

  sec(2π-α)=secα.

  csc(2π-α)=-cscα.

  角度制下的角的表示:

  sin(360°-α)=-sinα.

  cos(360°-α)=cosα.

  tan(360°-α)=-tanα.

  cot(360°-α)=-cotα.

  sec(360°-α)=secα.

  csc(360°-α)=-cscα.

  π/2±α 及3π/2±α与α的三角函数值之间的关系:(⒈~⒋)

  ⒈π/2+α与α的三角函数值之间的关系

  弧度制下的角的表示:

  sin(π/2+α)=cosα.

  cos(π/2+α)=—sinα.

  tan(π/2+α)=-cotα.

  cot(π/2+α)=-tanα.

  sec(π/2+α)=-cscα.

  csc(π/2+α)=secα.

  角度制下的角的表示:

  sin(90°+α)=cosα.

  cos(90°+α)=-sinα.

  tan(90°+α)=-cotα.

  cot(90°+α)=-tanα.

  sec(90°+α)=-cscα.

  csc(90°+α)=secα.

  ⒉ π/2-α与α的三角函数值之间的关系

  弧度制下的角的表示:

  sin(π/2-α)=cosα.

  cos(π/2-α)=sinα.

  tan(π/2-α)=cotα.

  cot(π/2-α)=tanα.

  sec(π/2-α)=cscα.

  csc(π/2-α)=secα.

  角度制下的角的表示:

  sin (90°-α)=cosα.

  cos (90°-α)=sinα.

  tan (90°-α)=cotα.

  cot (90°-α)=tanα.

  sec (90°-α)=cscα.

  csc (90°-α)=secα.

  ⒊ 3π/2+α与α的三角函数值之间的关系

  弧度制下的角的表示:

  sin(3π/2+α)=-cosα.

  cos(3π/2+α)=sinα.

  tan(3π/2+α)=-cotα.

  cot(3π/2+α)=-tanα.

  sec(3π/2+α)=cscα.

  csc(3π/2+α)=-secα.

  角度制下的角的表示:

  sin(270°+α)=-cosα.

  cos(270°+α)=sinα.

  tan(270°+α)=-cotα.

  cot(270°+α)=-tanα.

  sec(270°+α)=cscα.

  csc(270°+α)=-secα.

  ⒋ 3π/2-α与α的三角函数值之间的关系

  弧度制下的角的表示:

  sin(3π/2-α)=-cosα.

  cos(3π/2-α)=-sinα.

  tan(3π/2-α)=cotα.

  cot(3π/2-α)=tanα.

  sec(3π/2-α)=-cscα.

  csc(3π/2-α)=-secα.

  角度制下的角的表示:

  sin(270°-α)=-cosα.

  cos(270°-α)=-sinα.

  tan(270°-α)=cotα.

  cot(270°-α)=tanα.

  sec(270°-α)=-cscα.

  csc(270°-α)=-secα.

  2

  三角函数的万能公式有哪些

  sina=[2tan(a/2)]/[1+tan(a/2)]

  cosa=[1-tan(a/2)]/[1+tan(a/2)]

  tana=[2tan(a/2)]/[1-tan(a/2)]。

  这节内容比较多,都是公式,前面4部分可以通过图像和象限进行辅助记忆,第五部分就只能通过不断做题来熟悉记忆了,基础的两角和差公式是必须记住的,后面的只需要熟悉,当然越熟悉,后面做题速度可能就越快。

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/shijuan/jctb/fuxi/16879.html

[!--temp.pl--]

热门文章

最近发表

标签列表