首页 > 试卷 > 教材同步 > 高考复习知识点

高中数学函数知识点大全

  高中数学函数知识点 一次函数

  一、定义与定义式

  自变量x和因变量y有如下关系:y=kx+b 则此时称y是x的一次函数。

  【特别地,当b=0时,y是x的正比例函数。即:y=kx (k为常数,k≠0)】

  二、一次函数的性质

  1.y的变化值与对应的x的变化值成正比例,比值为k

  【即:y=kx+b (k为任意不为零的实数 b取任何实数)】

  2.当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质

  1.作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像——一条直线。

  因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

  2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

  3.k,b与函数图像所在象限:

  当k>0时,直线必通过一、三象限,y随x的增大而增大;

  当k<0时,直线必通过二、四象限,y随x的增大而减小。

  当b>0时,直线必通过一、二象限;

  当b=0时,直线通过原点

  当b<0时,直线必通过三、四象限。

  (特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。)

  四、确定一次函数的表达式

  已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

  (1)设一次函数的表达式(也叫解析式)为y=kx+b。

  (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b ... ① 和y2=kx2+b …②

  (3)解这个二元一次方程,得到k,b的值。

  (4)最后得到一次函数的表达式。

  五、一次函数在生活中的应用

  1.当时间t一定,距离s是速度v的一次函数。s=vt。

  2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

  六、常用公式:(不全面,可以在书上找)

  1.求函数图像的k值:(y1-y2)/(x1-x2)

  2.求与x轴平行线段的中点:|x1-x2|/2

  3.求与y轴平行线段的中点:|y1-y2|/2

  4.求任意线段的长:√(x1-x2)2+(y1-y2)2 (注:根号下(x1-x2)与(y1-y2)的平方和)

  二次函数

  一、定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,|a|还可以决定开口大小,|a|越大开口就越小,|a|越小开口就越大。)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  二、二次函数的三种表达式

  一般式:y=ax2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)2+k [抛物线的顶点P(h,k)]

  交点式:y=a(x-x?)(x-x?) [仅限于与x轴有交点A(x?,0)和 B(x?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2ak=(4ac-b2)/4a x1,x2=(-b±√b2-4ac)/2a

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/shijuan/jctb/fuxi/19049.html

[!--temp.pl--]

热门文章

最近发表

标签列表