新疆维吾尔自治区和田地区皮山县高级中学2020-2021学年高二上学期期末语文试题
新疆维吾尔自治区和田地区皮山县高级中学2020-2021学年高二上学期期末语文试题,扫描并关注下面的二维码,获取相关答案!

2.clea radj清楚掌握数学就意味着要善于解题。当我们解题时遇到一个新问题,总想用熟悉的题型去套,这只是满足于解出来。当碰到的题目类型有些难度或者没有做过类似题型时,往往就卡壳甚至束手无策了。只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。以下就是高中生想要学好数学就要掌握这四种高中数学学习方法:学习方法一:?细胞膜系统的结构和功能函数与方程思想函数的思想,就是运用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的等量关系,建立或构造函数关系,再运用函数的图像和性质去分析问题,转化问题,从而使问题获得解决。方程的思想,就是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型——方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使获得解决。函数与方程思想——重要形式(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y=f(x)的零点;(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题有时十分有效;(4)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(5)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。学习方法二:数形结合思想数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过以形助数,以数辅形,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.数形结合包含以形助数和以数辅形两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图像来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.数形结合思想——实现途径(1)通过坐标系形题数解:借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现的相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,形题数解时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图像的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x-2)2+(y-1)2=4,表示坐标平面内以(2,1)为圆心,以2为半径的圆.(2)通过转化构造数题形解:许多代数结构都有着相应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a(a>0)与距离互化;将a2与面积互化,将a2+b2+ab=a2+b2-2|a||b|cosθ(θ=60°或θ=120°)与余弦定理沟通;"的,清晰的

2.clea radj清楚掌握数学就意味着要善于解题。当我们解题时遇到一个新问题,总想用熟悉的题型去套,这只是满足于解出来。当碰到的题目类型有些难度或者没有做过类似题型时,往往就卡壳甚至束手无策了。只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。以下就是高中生想要学好数学就要掌握这四种高中数学学习方法:学习方法一:?细胞膜系统的结构和功能函数与方程思想函数的思想,就是运用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的等量关系,建立或构造函数关系,再运用函数的图像和性质去分析问题,转化问题,从而使问题获得解决。方程的思想,就是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型——方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使获得解决。函数与方程思想——重要形式(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y=f(x)的零点;(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题有时十分有效;(4)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(5)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。学习方法二:数形结合思想数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过以形助数,以数辅形,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.数形结合包含以形助数和以数辅形两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图像来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.数形结合思想——实现途径(1)通过坐标系形题数解:借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现的相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,形题数解时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图像的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x-2)2+(y-1)2=4,表示坐标平面内以(2,1)为圆心,以2为半径的圆.(2)通过转化构造数题形解:许多代数结构都有着相应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a(a>0)与距离互化;将a2与面积互化,将a2+b2+ab=a2+b2-2|a||b|cosθ(θ=60°或θ=120°)与余弦定理沟通;"的,清晰的
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/shijuan/jctb/gs/109085.html