首页 > 试卷 > 教材同步 > 高三试卷

2022-2023学年高一数学人教A2019必修第一册同步讲义第11讲函数的概念与表示4种题型

2022-2023学年高一数学人教A2019必修第一册同步讲义第11讲函数的概念与表示4种题型,以下展示关于2022-2023学年高一数学人教A2019必修第一册同步讲义第11讲函数的概念与表示4种题型的相关内容节选,更多内容请多关注我们

2022-2023学年高一数学人教A2019必修第一册同步讲义第11讲函数的概念与表示4种题型

1、第11讲 函数的概念与表示4种题型【考点分析】考点一:函数的概念设、是两个非空数集,如果按照某种确定的对应关系,使对于集合中的任意一个数,在集合中都有唯一确定的数和它对应,那么称为从集合到集合的一个函数,记作,.其中:叫做自变量,的取值范围叫做函数的定义域与的值相对应的值叫做函数值,函数值的集合叫做函数的值域考点二:函数的三要素函数的三要素:定义域、值域和对应关系同一(相等)函数:如果两个函数的定义和对应关系完全一致,则这两个函数相等考点三:函数的表示方法解析法就是把变量,之间的关系用一个关系式来表示,通过关系式可以由的值求出的值.图象法就是把,之间的关系绘制成图象,图象上每个点的坐标就是相应

2、的变量,的值.列表法就是将变量,的取值列成表格,由表格直接反映出两者的关系.考点四:分段函数的概念若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数例如【题型目录】题型一:函数的概念题型二:函数定义域题型三:函数的解析式的求法题型四:分段函数【典型例题】题型一:函数的概念【例1】(2022宁夏银川一中高二期中(文)下列四个图形中,不是以为自变量的函数的图象是()ABCD【答案】C由函数定义:定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的函数值与之对应,不符合函数定义.故选:C【例2】(2

3、022湖南高一课时练习)设集合,那么下列四个图形中,能表示集合到集合的函数关系的有()ABCD【答案】C由题意,函数的定义域为,对于中,函数的定义域不是集合,所以不能构成集合到集合的函数关系;对于中,函数的定义域为集合,值域为集合,所以可以构成集合到集合的函数关系;对于中,函数的定义域为集合,值域为集合,所以可以构成集合到集合的函数关系;对于中,根据函数的定义,集合中的元素在集合中对应两个函数值,不符合函数的定义,所以不正确.故选:C【例3】(2022黑龙江鹤岗一中高一期末)设集合,若对于函数,其定义域为,值域为,则这个函数的图象可能是()ABCD【答案】D对于A,函数的定义域为,不满足题意,

4、故A不正确;对于B,一个自变量对应多个值,不符合函数的概念,故B不正确;对于C,函数的值域为,不符合题意,故C不正确;对于D,函数的定义域为,值域为,满足题意,故D正确.故选:D【例4】(2022全国高一单元测试)下列各式为y关于x的函数解析式是()ABCD 【答案】C【分析】根据函数的定义逐个分析判断即可【详解】A项,定义域为R,定义域内每个值按对应法则不是唯一实数与之对应,所以不是函数,A项错误;B项,定义域为,无解,所以不是函数,B项错误;C项,定义域为R,对于定义域内每一个值都有唯一实数与之对应,所以是函数,C项正确;D项,当时,y有两个值0,1与之对应,所以不是函数,D项错误.故选:

5、C.【题型专练】1.(2022全国高一)下列图象中不能作为函数图象的是( )ABCD【答案】B能作为函数图象,需满足:按照图像得出的对应关系,对于自变量x的取值范围内的每一个值,按照图像得出的对应关系,都有唯一的一个y值和它对应;从图像直观来看,平行与y轴的直线与图像至多有一个交点.则B不能作为函数图象.故选B2(2022全国高一单元测试)若函数的定义域为,值域为,则的图象可能是()ABCD【答案】B【分析】利用函数的定义,数形结合即可对选项进行判断.【详解】选项A中,当时,不符合题意,排除A;选项C中,存在一个x对应多个y值,不是函数的图象,排除C;选项D中,x取不到0,不符合题意,排除D.故选:B.3(2022全国高一课时练习)下列图形能表示函数的图象的是()ABCD【答案】B【分析】由函数的定义判断即可.【详解】由函数的定义:对于集合中任意一个数,在集合中都有唯一确定的数和它对应,那么就称为AB从集合到集合的一个函数可知,只有B选项能表示函数的图象.故选:B题型二:函数定义域1.已知函数解析式,求定义域(1)分式型函数:分母不等于零.(2)偶次根型函数:被开方数大于或等于0.(3)一次函数、二次函数的

(1)关于实验要点,下列说法错误的是(填选项字母)。A.安装轨道时,轨道末端必须水平B.实验过程中,复写纸可以移动,白纸不能移动C.人射小球的质量小于被碰小球的质量,两球的半径相同D.同一组实验中,人射小球必须从同一位置由静止释放

1、第11讲 函数的概念与表示4种题型【考点分析】考点一:函数的概念设、是两个非空数集,如果按照某种确定的对应关系,使对于集合中的任意一个数,在集合中都有唯一确定的数和它对应,那么称为从集合到集合的一个函数,记作,.其中:叫做自变量,的取值范围叫做函数的定义域与的值相对应的值叫做函数值,函数值的集合叫做函数的值域考点二:函数的三要素函数的三要素:定义域、值域和对应关系同一(相等)函数:如果两个函数的定义和对应关系完全一致,则这两个函数相等考点三:函数的表示方法解析法就是把变量,之间的关系用一个关系式来表示,通过关系式可以由的值求出的值.图象法就是把,之间的关系绘制成图象,图象上每个点的坐标就是相应

2、的变量,的值.列表法就是将变量,的取值列成表格,由表格直接反映出两者的关系.考点四:分段函数的概念若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数例如【题型目录】题型一:函数的概念题型二:函数定义域题型三:函数的解析式的求法题型四:分段函数【典型例题】题型一:函数的概念【例1】(2022宁夏银川一中高二期中(文)下列四个图形中,不是以为自变量的函数的图象是()ABCD【答案】C由函数定义:定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的函数值与之对应,不符合函数定义.故选:C【例2】(2

3、022湖南高一课时练习)设集合,那么下列四个图形中,能表示集合到集合的函数关系的有()ABCD【答案】C由题意,函数的定义域为,对于中,函数的定义域不是集合,所以不能构成集合到集合的函数关系;对于中,函数的定义域为集合,值域为集合,所以可以构成集合到集合的函数关系;对于中,函数的定义域为集合,值域为集合,所以可以构成集合到集合的函数关系;对于中,根据函数的定义,集合中的元素在集合中对应两个函数值,不符合函数的定义,所以不正确.故选:C【例3】(2022黑龙江鹤岗一中高一期末)设集合,若对于函数,其定义域为,值域为,则这个函数的图象可能是()ABCD【答案】D对于A,函数的定义域为,不满足题意,

4、故A不正确;对于B,一个自变量对应多个值,不符合函数的概念,故B不正确;对于C,函数的值域为,不符合题意,故C不正确;对于D,函数的定义域为,值域为,满足题意,故D正确.故选:D【例4】(2022全国高一单元测试)下列各式为y关于x的函数解析式是()ABCD 【答案】C【分析】根据函数的定义逐个分析判断即可【详解】A项,定义域为R,定义域内每个值按对应法则不是唯一实数与之对应,所以不是函数,A项错误;B项,定义域为,无解,所以不是函数,B项错误;C项,定义域为R,对于定义域内每一个值都有唯一实数与之对应,所以是函数,C项正确;D项,当时,y有两个值0,1与之对应,所以不是函数,D项错误.故选:

5、C.【题型专练】1.(2022全国高一)下列图象中不能作为函数图象的是( )ABCD【答案】B能作为函数图象,需满足:按照图像得出的对应关系,对于自变量x的取值范围内的每一个值,按照图像得出的对应关系,都有唯一的一个y值和它对应;从图像直观来看,平行与y轴的直线与图像至多有一个交点.则B不能作为函数图象.故选B2(2022全国高一单元测试)若函数的定义域为,值域为,则的图象可能是()ABCD【答案】B【分析】利用函数的定义,数形结合即可对选项进行判断.【详解】选项A中,当时,不符合题意,排除A;选项C中,存在一个x对应多个y值,不是函数的图象,排除C;选项D中,x取不到0,不符合题意,排除D.故选:B.3(2022全国高一课时练习)下列图形能表示函数的图象的是()ABCD【答案】B【分析】由函数的定义判断即可.【详解】由函数的定义:对于集合中任意一个数,在集合中都有唯一确定的数和它对应,那么就称为AB从集合到集合的一个函数可知,只有B选项能表示函数的图象.故选:B题型二:函数定义域1.已知函数解析式,求定义域(1)分式型函数:分母不等于零.(2)偶次根型函数:被开方数大于或等于0.(3)一次函数、二次函数的

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/shijuan/jctb/gs/140609.html

[!--temp.pl--]