高考数学一轮复习讲义微专题《18利用导数解函数的最值》(含详解),以下展示关于高考数学一轮复习讲义微专题《18利用导数解函数的最值》(含详解)的相关内容节选,更多内容请多关注我们
1、微专题18 函数的最值一、基础知识:1、函数的最大值与最小值:(1)设函数的定义域为,若,使得对,均满足,那么称为函数的一个最大值点,称为函数的最大值(2)设函数的定义域为,若,使得对,均满足,那么称为函数的一个最小值点,称为函数的最小值(3)最大值与最小值在图像中体现为函数的最高点和最低点(4)最值为函数值域的元素,即必须是某个自变量的函数值。例如:,由单调性可得有最小值,但由于取不到4,所以尽管函数值无限接近于,但就是达不到。没有最大值。(5)一个函数其最大值(或最小值)至多有一个,而最大值点(或最小值点)的个数可以不唯一,例如,其最大值点为,有无穷多个。2“最值”与“极值”的区别和联系右
2、图为一个定义在闭区间上的函数的图象图中与是极小值,是极大值函数在上的最大值是,最小值是(1)“最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值3、结论:一般地,在闭区间上函数的图像是一条连续不断的曲线,那么函数
3、在上必有最大值与最小值4、最值点只可能在极值点或者边界点处产生,其余的点位于单调区间中,意味着在这些点的周围既有比它大的,也有比它小的,故不会成为最值点5、利用导数求函数的最值步骤:一般地,求函数在上的最大值与最小值的步骤如下:(1)求在内的极值;(2)将的各极值与端点处的函数值、比较,其中最大的一个是最大值,最小的一个是最小值,得出函数在上的最值6、求函数最值的过程中往往要利用函数的单调性,所以说,函数的单调区间是求最值与极值的基础 7、在比较的过程中也可简化步骤:(1)利用函数单调性可判断边界点是否能成为最大值点或最小值点(2)极小值点不会是最大值点,极大值点也不会是最小值点8、最值点的作
4、用(1)关系到函数的值域(2)由最值可构造恒成立的不等式:例如:,可通过导数求出,由此可得到对于任意的,均有,即不等式二、典型例题:例1:求函数的最值思路:首先判定定义域为,对函数进行求导,根据单调区间求出函数的最值解:,令,解得:的单调区间为:,无最小值小炼有话说:函数先增再减,其最大值即为它的极大值点,我们可以将这种先增再减,或者先减再增的函数成为“单峰函数”,在单峰函数中,极值点即为函数的某个最值点。例2:已知函数,是的一个极值点,求:(1)实数的值(2)判断在区间上是否存在最大值和最小值解:(1) 是的一个极值点(2)思路,由第(1)问可得,进而求出单调区间得到最值解: ,令,解得:或
5、的单调区间为:计算 小炼有话说:在本题中,最小值的求解尽管不在所给区间中,但也需要代入到中计算,此时计算出的是函数左边界的临界值,如果,则函数就不存在最小值了。所以在求定义域为开区间的函数最值时,也要关注边界处的临界值。例3:已知函数,是否存在实数,使得在上取得最大值,最小值若存在,求出的值,若不存在,请说明理由思路:利用求出函数的单调区间,在根据单调区间判断最大最小值点的可能位置,进而根据最大最小值解出解:,(1)当时, 在单调递减 (2)当时, 在单调递增 或小炼有话说:本题在求最值时由于函数带有参数,从而在解单调区间的过程中涉及到对参数的分类讨论。从而确定最值的选取(有关含参数单调区间的计算详见2.1)例4:求函数()的最值思路一:考虑去掉绝对值得到一个分段函数,在利用导数求出每段的最值,再进行比较解: 恒成立 当时,可得:在单调递增,在单调递减时,当时,在单调递减, 当时,可得函数的最值为,思路二:考虑先求出绝对值里表达式的值域,然后在加上绝对值求出最值。解:令 ,令,解得:或的单调区间为:的值域为 的值域为 ,小炼有话说:(1)第一种方法为处理含绝对值函数的常用方法,绝对值的函数中若绝对值内部比较简单,则通常先通过讨论绝对值内部的符号,将函数转化成为分段函数进行分析,而求分段函数的最值时可分别求出每一段的
(2)若某次将钢珠从固定立柱处由静止释放,记录钢珠击中中心竖直线的刻度为y;将竖直y;平面向远离B方向平移20.00cm,再次将钢珠从固定立柱处由静止释放,记录钢珠击中y1=y+15cm;中心竖直线的刻度为y=y+15cm;将竖直平面再向远离B方向平移20.00cm,让钢珠从固定立柱处由静止释放,记录钢珠击中中心竖直线的刻度为=y+40cm重力加速y2=y+40cm.度g取10m/s,则小钢珠平抛的初速度v=m/s.(保留两位有效数字)10m/s^2,v0=
1、微专题18 函数的最值一、基础知识:1、函数的最大值与最小值:(1)设函数的定义域为,若,使得对,均满足,那么称为函数的一个最大值点,称为函数的最大值(2)设函数的定义域为,若,使得对,均满足,那么称为函数的一个最小值点,称为函数的最小值(3)最大值与最小值在图像中体现为函数的最高点和最低点(4)最值为函数值域的元素,即必须是某个自变量的函数值。例如:,由单调性可得有最小值,但由于取不到4,所以尽管函数值无限接近于,但就是达不到。没有最大值。(5)一个函数其最大值(或最小值)至多有一个,而最大值点(或最小值点)的个数可以不唯一,例如,其最大值点为,有无穷多个。2“最值”与“极值”的区别和联系右
2、图为一个定义在闭区间上的函数的图象图中与是极小值,是极大值函数在上的最大值是,最小值是(1)“最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值3、结论:一般地,在闭区间上函数的图像是一条连续不断的曲线,那么函数
3、在上必有最大值与最小值4、最值点只可能在极值点或者边界点处产生,其余的点位于单调区间中,意味着在这些点的周围既有比它大的,也有比它小的,故不会成为最值点5、利用导数求函数的最值步骤:一般地,求函数在上的最大值与最小值的步骤如下:(1)求在内的极值;(2)将的各极值与端点处的函数值、比较,其中最大的一个是最大值,最小的一个是最小值,得出函数在上的最值6、求函数最值的过程中往往要利用函数的单调性,所以说,函数的单调区间是求最值与极值的基础 7、在比较的过程中也可简化步骤:(1)利用函数单调性可判断边界点是否能成为最大值点或最小值点(2)极小值点不会是最大值点,极大值点也不会是最小值点8、最值点的作
4、用(1)关系到函数的值域(2)由最值可构造恒成立的不等式:例如:,可通过导数求出,由此可得到对于任意的,均有,即不等式二、典型例题:例1:求函数的最值思路:首先判定定义域为,对函数进行求导,根据单调区间求出函数的最值解:,令,解得:的单调区间为:,无最小值小炼有话说:函数先增再减,其最大值即为它的极大值点,我们可以将这种先增再减,或者先减再增的函数成为“单峰函数”,在单峰函数中,极值点即为函数的某个最值点。例2:已知函数,是的一个极值点,求:(1)实数的值(2)判断在区间上是否存在最大值和最小值解:(1) 是的一个极值点(2)思路,由第(1)问可得,进而求出单调区间得到最值解: ,令,解得:或
5、的单调区间为:计算 小炼有话说:在本题中,最小值的求解尽管不在所给区间中,但也需要代入到中计算,此时计算出的是函数左边界的临界值,如果,则函数就不存在最小值了。所以在求定义域为开区间的函数最值时,也要关注边界处的临界值。例3:已知函数,是否存在实数,使得在上取得最大值,最小值若存在,求出的值,若不存在,请说明理由思路:利用求出函数的单调区间,在根据单调区间判断最大最小值点的可能位置,进而根据最大最小值解出解:,(1)当时, 在单调递减 (2)当时, 在单调递增 或小炼有话说:本题在求最值时由于函数带有参数,从而在解单调区间的过程中涉及到对参数的分类讨论。从而确定最值的选取(有关含参数单调区间的计算详见2.1)例4:求函数()的最值思路一:考虑去掉绝对值得到一个分段函数,在利用导数求出每段的最值,再进行比较解: 恒成立 当时,可得:在单调递增,在单调递减时,当时,在单调递减, 当时,可得函数的最值为,思路二:考虑先求出绝对值里表达式的值域,然后在加上绝对值求出最值。解:令 ,令,解得:或的单调区间为:的值域为 的值域为 ,小炼有话说:(1)第一种方法为处理含绝对值函数的常用方法,绝对值的函数中若绝对值内部比较简单,则通常先通过讨论绝对值内部的符号,将函数转化成为分段函数进行分析,而求分段函数的最值时可分别求出每一段的