首页 > 试卷 > 教材同步 > 高三试卷

2022-2023学年湖北省恩施州高中教育联盟高一(下)期中数学试卷-普通用卷

2022-2023学年湖北省恩施州高中教育联盟高一(下)期中数学试卷-普通用卷,以下展示关于2022-2023学年湖北省恩施州高中教育联盟高一(下)期中数学试卷-普通用卷的相关内容节选,更多内容请多关注我们

2022-2023学年湖北省恩施州高中教育联盟高一(下)期中数学试卷-普通用卷

1、2022-2023学年湖北省恩施州高中教育联盟高一(下)期中数学试卷一、单选题(本大题共8小题,共40.0分。在每小题列出的选项中,选出符合题目的一项)1.  已知集合A=x|x210,B=x|12x4,则AB=(    )A. (0,1B. 0,1C. 1,0)D. 1,02.  下列函数中,其定义域和值域分别与y=elnx的定义域和值域相同的是(    )A. y=|x|B. y=1 xC. y=2xD. y=ln|x|3.  若命题“xR,x24x+a0”为假命题,则实数a的取值

2、范围是(    )A. (,4B. (,4)C. (,4)D. 4,+)4.  在ABC中,a=4,b=4 3,A=30,则B=(    )A. 60B. 60或120C. 30D. 30或1505.  已知非零向量a,b,则“|ab|=|b|”是“a2b=0”成立的(    )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.  已知函数f(x)的图象的一部分如图1,则图2的函数图象所对应的函数解析式(&n

3、bsp;   )A. y=f(2x1)B. y=f(4x12)C. y=f(12x)D. y=f(14x2)7.  已知函数f(x)=sinnx+cosnx(nN*),则下列说法正确的是(    )n=1时,f(x)的最大值为 2;n=2时,方程f(x)=2sinx+|sinx|在0,2上有且只有三个不等实根;n=3时,f(x)为奇函数;n=4时,f(x)的最小正周期为2A. B. C. D. 8.  已知函数f(x)=sin(x+)(>0,0<<2).若f(x8)为奇函数,f(x+8)

4、为偶函数,且f(x)= 22在(0,6)至多有2个实根,则的最大值为(    )A. 10B. 14C. 15D. 18二、多选题(本大题共4小题,共20.0分。在每小题有多项符合题目要求)9.  钝角ABC的内角A,B,C的对边分别为a,b,c,若a= 2,b=2 2,且c>b,则c的值可能为(    )A. 2 5B. 4C. 2 3D. 310.  已知函数f(x)=12x1+2x,g(x)=lg( x2+1x),则(    )A. 函数f(x

5、)为偶函数B. 函数g(x)为奇函数C. 函数F(x)=f(x)+g(x)在区间1,1上的最大值与最小值之和为0D. 设F(x)=f(x)+g(x),则F(2a)+F(1a)<0的解集为(1,+)11.  如图所示,设单位圆与x轴的正半轴相交于点A(1,0),以x轴非负半轴为始边作锐角,它们的终边分别与单位圆相交于点P1,A1,P,则下列说法正确的是(    )A. AP的长度为B. 扇形OA1P1的面积为C. 当A1与P重合时,|AP1|=2sinD. 当=3时,四边形OAA1P1面积的最大值为1212.  如图,设(0,),

6、且2,当xOy=时,定义平面坐标系xOy为的斜坐标系,在的斜坐标系中,任意一点P的斜坐标这样定义:设e1,e2是分别与x轴,y轴正方向相同的单位向量,若OP=xe1+ye2,记OP=(x,y),则下列结论中正确的是(    )A. 设a=(m,n),b=(s,t),若a=b,则m=s,n=tB. 设a=(m,n),则|a|= m2+n2C. 设a=(m,n),b=(s,t),若a/b,则mtns=0D. 设a=(1,2),b=(2,1),若a与b的夹角为3,则=3三、填空题(本大题共4小题,共20.0分)13.  已知函数f(x)可用列表法表示如下,则f10f(12)的值是_ xx11<x<2x2f(x)12314.  若2x+y=1,且z=4x+2y,则z的最小值是_15.  写出一个同时满足下列三个性质的函数:f(x)= _ f(x)为偶函数;f(x)关于(2,0)中心对称;f(x)在R上的最大值为316.  在锐角ABC中,a2b2=bc,则角B的取值范围是_ ,5tanB5tanA+6sinA的取值范围为_ 四、解答题(本大题共6小题,共70.0

12.均匀介质中,波源位于xOy水平面的A(+2,0)点,从t=0时开始计时,波源开始沿垂直于xOy水平面的x轴(z轴正方向竖直向上)从z=0处开始做简谐运动,其振动方程为z=2sin5πtcm。经时间t0,在-2m≤x≤6m、-4m≤y≤4m区域中第二次形成如图所示波面分布图(实线表示波峰,虚线表示相邻的波谷)。xOy水平面上P点的坐标为(-4,+8)。,下列说法正确的是A.波的传播速度为10m/sB.波的周期为0.20sC.第二次形成图示中波面分布图的时间t0=0.8sD.t=1.25s时,P点受到的回复力方向沿x轴正方向

1、2022-2023学年湖北省恩施州高中教育联盟高一(下)期中数学试卷一、单选题(本大题共8小题,共40.0分。在每小题列出的选项中,选出符合题目的一项)1.  已知集合A=x|x210,B=x|12x4,则AB=(    )A. (0,1B. 0,1C. 1,0)D. 1,02.  下列函数中,其定义域和值域分别与y=elnx的定义域和值域相同的是(    )A. y=|x|B. y=1 xC. y=2xD. y=ln|x|3.  若命题“xR,x24x+a0”为假命题,则实数a的取值

2、范围是(    )A. (,4B. (,4)C. (,4)D. 4,+)4.  在ABC中,a=4,b=4 3,A=30,则B=(    )A. 60B. 60或120C. 30D. 30或1505.  已知非零向量a,b,则“|ab|=|b|”是“a2b=0”成立的(    )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.  已知函数f(x)的图象的一部分如图1,则图2的函数图象所对应的函数解析式(&n

3、bsp;   )A. y=f(2x1)B. y=f(4x12)C. y=f(12x)D. y=f(14x2)7.  已知函数f(x)=sinnx+cosnx(nN*),则下列说法正确的是(    )n=1时,f(x)的最大值为 2;n=2时,方程f(x)=2sinx+|sinx|在0,2上有且只有三个不等实根;n=3时,f(x)为奇函数;n=4时,f(x)的最小正周期为2A. B. C. D. 8.  已知函数f(x)=sin(x+)(>0,0<<2).若f(x8)为奇函数,f(x+8)

4、为偶函数,且f(x)= 22在(0,6)至多有2个实根,则的最大值为(    )A. 10B. 14C. 15D. 18二、多选题(本大题共4小题,共20.0分。在每小题有多项符合题目要求)9.  钝角ABC的内角A,B,C的对边分别为a,b,c,若a= 2,b=2 2,且c>b,则c的值可能为(    )A. 2 5B. 4C. 2 3D. 310.  已知函数f(x)=12x1+2x,g(x)=lg( x2+1x),则(    )A. 函数f(x

5、)为偶函数B. 函数g(x)为奇函数C. 函数F(x)=f(x)+g(x)在区间1,1上的最大值与最小值之和为0D. 设F(x)=f(x)+g(x),则F(2a)+F(1a)<0的解集为(1,+)11.  如图所示,设单位圆与x轴的正半轴相交于点A(1,0),以x轴非负半轴为始边作锐角,它们的终边分别与单位圆相交于点P1,A1,P,则下列说法正确的是(    )A. AP的长度为B. 扇形OA1P1的面积为C. 当A1与P重合时,|AP1|=2sinD. 当=3时,四边形OAA1P1面积的最大值为1212.  如图,设(0,),

6、且2,当xOy=时,定义平面坐标系xOy为的斜坐标系,在的斜坐标系中,任意一点P的斜坐标这样定义:设e1,e2是分别与x轴,y轴正方向相同的单位向量,若OP=xe1+ye2,记OP=(x,y),则下列结论中正确的是(    )A. 设a=(m,n),b=(s,t),若a=b,则m=s,n=tB. 设a=(m,n),则|a|= m2+n2C. 设a=(m,n),b=(s,t),若a/b,则mtns=0D. 设a=(1,2),b=(2,1),若a与b的夹角为3,则=3三、填空题(本大题共4小题,共20.0分)13.  已知函数f(x)可用列表法表示如下,则f10f(12)的值是_ xx11<x<2x2f(x)12314.  若2x+y=1,且z=4x+2y,则z的最小值是_15.  写出一个同时满足下列三个性质的函数:f(x)= _ f(x)为偶函数;f(x)关于(2,0)中心对称;f(x)在R上的最大值为316.  在锐角ABC中,a2b2=bc,则角B的取值范围是_ ,5tanB5tanA+6sinA的取值范围为_ 四、解答题(本大题共6小题,共70.0

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/shijuan/jctb/gs/149509.html

[!--temp.pl--]