第三部分 名校模拟试题训练22-2020【启航英语】高二英语语法填空 短文改错 七选五
第三部分 名校模拟试题训练22-2020【启航英语】高二英语语法填空 短文改错 七选五,扫描并关注下面的二维码,获取相关答案!
吉秋兴八首(其一)杜甫玉露凋伤枫树林,巫山巫峡气萧森。江间波浪"高考二轮复习2018高考数学二轮复习直线的方程知识专题总结 2018年高考二轮复习是高考成绩提升的关键期,考生一定要积极备考,梳理高中学科知识脉络,牢记知识点。小编整理了2018高考数学二轮复习知识点,直线的方程知识总结如下:一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180(2)直线的斜率①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。⑤一般式:(A,B不全为0)⑤一般式:(A,B不全为0)注意:1.各式的适用范围2.特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(4)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。(5)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(6)两条直线的交点相交:交点坐标即方程组的一组解。方程组无解;方程组有无数解与重合(7)两点间距离公式:设是平面直角坐标系中的两个点,则(8)点到直线距离公式:一点到直线的距离(9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。高中数学知识点一:直线方程的一般式关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0,这个方程(其中A、B不全为零)叫做直线方程的一般式.高中数学知识点二:直线方程的不同形式间的关系直线方程的五种形式的比较如下表:高中数学知识点三:直线方程的综合应用1.已知所求曲线是直线时,用待定系数法求.2.根据题目所给条件,选择适当的直线方程的形式,求出直线方程.对于两直线的平行与垂直,直线方程的形式不同,考虑的方向也不同.高中数学直线方程知识点:表达方式高中数学知识点1:一般式:Ax+By+C=0(A、B不同时为0)【适用记忆点:于所有直线】高中数学知识点2:点斜式:y-y0=k(x-x0)【适用于不垂直于x轴的直线】表示斜率为k,且过(x0,y0)的直线高中数学知识点3:截距式:x/a+y/b=1【适用于不过原点或不垂直于x轴、y轴的直线】表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线高中数学知识点4:斜截式:y=kx+b【适用于不垂直于x轴的直线】表示斜率为k且y轴截距为b的直线高中数学知识点5:两点式:【适用于不垂直于x轴、y轴的直线】表示过(x1,y1)和(x2,y2)的直线(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)高中数学知识点6:交点式:f1(x,y)*m+f2(x,y)=0【适用于任何直线】表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线高中数学知识点7:点平式:f(x,y)-f(x0,y0)=0【适用于任何直线】表示过点(x0,y0)且与直线f(x,y)=0平行的直线高中数学知识点8:法线式:x·cosα+ysinα-p=0【适用于不平行于坐标轴的直线】过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度高中数学知识点9:点向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)【适用于任何直线】表示过点(x0,y0)且方向向量为(u,v)的直线高中数学知识点10:法向式:a(x-x0)+b(y-y0)=0【适用于任何直线】表示过点(x0,y0)且与向量(a,b)垂直的直线文章来源于网络,由编辑整理,如有侵权请及时联系删除。 "兼天涌,塞上风云接地阴。丛菊两开他日泪,孤舟一系故园心。寒衣处处催刀尺,白帝城高急暮砧。鸿昌"
吉秋兴八首(其一)杜甫玉露凋伤枫树林,巫山巫峡气萧森。江间波浪"高考二轮复习2018高考数学二轮复习直线的方程知识专题总结 2018年高考二轮复习是高考成绩提升的关键期,考生一定要积极备考,梳理高中学科知识脉络,牢记知识点。小编整理了2018高考数学二轮复习知识点,直线的方程知识总结如下:一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180(2)直线的斜率①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。⑤一般式:(A,B不全为0)⑤一般式:(A,B不全为0)注意:1.各式的适用范围2.特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(4)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。(5)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(6)两条直线的交点相交:交点坐标即方程组的一组解。方程组无解;方程组有无数解与重合(7)两点间距离公式:设是平面直角坐标系中的两个点,则(8)点到直线距离公式:一点到直线的距离(9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。高中数学知识点一:直线方程的一般式关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0,这个方程(其中A、B不全为零)叫做直线方程的一般式.高中数学知识点二:直线方程的不同形式间的关系直线方程的五种形式的比较如下表:高中数学知识点三:直线方程的综合应用1.已知所求曲线是直线时,用待定系数法求.2.根据题目所给条件,选择适当的直线方程的形式,求出直线方程.对于两直线的平行与垂直,直线方程的形式不同,考虑的方向也不同.高中数学直线方程知识点:表达方式高中数学知识点1:一般式:Ax+By+C=0(A、B不同时为0)【适用记忆点:于所有直线】高中数学知识点2:点斜式:y-y0=k(x-x0)【适用于不垂直于x轴的直线】表示斜率为k,且过(x0,y0)的直线高中数学知识点3:截距式:x/a+y/b=1【适用于不过原点或不垂直于x轴、y轴的直线】表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线高中数学知识点4:斜截式:y=kx+b【适用于不垂直于x轴的直线】表示斜率为k且y轴截距为b的直线高中数学知识点5:两点式:【适用于不垂直于x轴、y轴的直线】表示过(x1,y1)和(x2,y2)的直线(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)高中数学知识点6:交点式:f1(x,y)*m+f2(x,y)=0【适用于任何直线】表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线高中数学知识点7:点平式:f(x,y)-f(x0,y0)=0【适用于任何直线】表示过点(x0,y0)且与直线f(x,y)=0平行的直线高中数学知识点8:法线式:x·cosα+ysinα-p=0【适用于不平行于坐标轴的直线】过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度高中数学知识点9:点向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)【适用于任何直线】表示过点(x0,y0)且方向向量为(u,v)的直线高中数学知识点10:法向式:a(x-x0)+b(y-y0)=0【适用于任何直线】表示过点(x0,y0)且与向量(a,b)垂直的直线文章来源于网络,由编辑整理,如有侵权请及时联系删除。 "兼天涌,塞上风云接地阴。丛菊两开他日泪,孤舟一系故园心。寒衣处处催刀尺,白帝城高急暮砧。鸿昌"
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/shijuan/jctb/gs/78516.html