一、高中物理知识点总结运动学的基本概念
1、参考系: 运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都是相对于参考系在而言的。通常以地面为参考系。
2、质点:
(1)定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。
(2)物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物体能否看成质点,要具体问题具体分析。
(3)物体可被看做质点的几种情况:
①平动的物体通常可视为质点。
②有转动但相对平动而言可以忽略时,也可以把物体视为质点。
③同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以。
【注】质点并不是质量很小的点,要区别于几何学中的“点”。
3、时间和时刻:
时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。
4、位移和路程:
位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;
路程是质点运动轨迹的长度,是标量。
5、速度:
用来描述质点运动快慢和方向的物理量,是矢量。
(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为
,方向与位移的方向相同。平均速度对变速运动只能作粗略的描述。
(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。瞬时速度的大小简称速率,它是一个标量。
6、加速度:用量描述速度变化快慢的的物理量,其定义式为
加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。
补充:速度与加速度的关系
1、速度与加速度没有必然的关系,即:
(1)速度大,加速度不一定也大;
(2)加速度大,速度不一定也大;
(3)速度为零,加速度不一定也为零;
(4)加速度为零,速度不一定也为零。
2、当加速度a与速度V方向的关系确定时,则有:
(1)若a 与V方向相同时,不管a如何变化,V都增大。
(2)若a 与V方向相反时,不管a如何变化,V都减小。
二、匀变速直线运动的规律及其应用:
1、定义:在任意相等的时间内速度的变化都相等的直线运动。
2、匀变速直线运动的基本规律,可由下面四个基本关系式表示:
3、几个常用的推论:
(1)任意两个连续相等的时间T内的位移之差为恒量
△x=x2-x1=x3-x2=……=xn-xn-1=aT2
(2)某段时间内时间中点瞬时速度等于这段时间内的平均速度,
(3)一段位移内位移中点的瞬时速度v中与这段位移初速度v0和末速度vt的关系为。
4、初速度为零的匀加速直线运动的比例式(2)初速度为零的匀变速直线运动中的几个重要结论:
①1T末,2T末,3T末……瞬时速度之比为:
v1∶v2∶v3∶……∶vn=1∶2∶3∶……∶n
②第一个T内,第二个T内,第三个T内……第n个T内的位移之比为:
x1∶x2∶x3∶……∶xn=1∶3∶5∶……∶(2n-1)
③1T内,2T内,3T内……位移之比为:
xⅠ∶xⅡ∶xⅢ∶……∶xN=1∶4∶9∶……∶n2
④通过连续相等的位移所用时间之比为:
三、自由落体运动,竖直上抛运动
1、自由落体运动:只在重力作用下由静止开始的下落运动,因为忽略了空气的阻力,所以是一种理想的运动,是初速度为零、加速度为g的匀加速直线运动。
2、自由落体运动规律:
3、竖直上抛运动:
可以看作是初速度为v0,加速度方向与v0方向相反,大小等于的g的匀减速直线运动,可以把它分为向上和向下两个过程来处理。
(1)竖直上抛运动规律
(2)竖直上抛运动的对称性
如下图,物体以初速度v0竖直上抛, A、B为途中的任意两点,C为最高点,则:
(1)时间对称性
物体上升过程中从A→C所用时间tAC和下降过程中从C→A所用时间tCA相等,同理tAB=tBA。
(2)速度对称性
物体上升过程经过A点的速度与下降过程经过A点的速度大小相等。
【注】在竖直上抛运动中,当物体经过抛出点上方某一位置时,可能处于上升阶段,也可能处于下降阶段,因此这类问题可能造成时间多解或者速度多解。
四、运动的图象,运动的相遇和追及问题
1、图象:
(1)x—t图象
①物理意义:反映了做直线运动的物体的位移随时间变化的规律。
②表示物体处于静止状态
③图线斜率的意义:
图线上某点切线的斜率的大小表示物体速度的大小;
图线上某点切线的斜率的正负表示物体方向。
④两种特殊的x-t图象
匀速直线运动的x-t图象是一条过原点的直线;
若x-t图象是一条平行于时间轴的直线,则表示物体处于静止状态。
(2)v—t图象
①物理意义:反映了做直线运动的物体的速度随时间变化的规律。
②图线斜率的意义:
a. 图线上某点切线的斜率的大小表示物体运动的加速度的大小
b. 图线上某点切线的斜率的正负表示加速度的方向
③图象与坐标轴围成的“面积”的意义:
a. 图象与坐标轴围成的面积的数值表示相应时间内的位移的大小。
b. 若此面积在时间轴的上方,表示这段时间内的位移方向为正方向;若此面积在时间轴的下方,表示这段时间内的位移方向为负方向。
③常见的两种图象形式:
a. 匀速直线运动的v-t图象是与横轴平行的直线
b. 匀变速直线运动的v-t图象是一条倾斜的直线
2、相遇和追及问题:
这类问题的关键是两物体在运动过程中,速度关系和位移关系,要注意寻找问题中隐含的临界条件,通常有两种情况:
易错现象:
1、混淆x—t图象和v-t图象,不能区分它们的物理意义
2、不能正确计算图线的斜率、面积
3、在处理汽车刹车、飞机降落等实际问题时注意,汽车、飞机停止后不会后退
五、力 重力 弹力 摩擦力
1、力:
力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。
按照力命名的依据不同,可以把力分为:
①按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)
②按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。
力的作用效果:
①形变;
②改变运动状态.
2、重力:
由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定。
注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力。由于重力远大于向心力,一般情况下近似认为重力等于万有引力。
3、弹力:
(1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。
(2)条件:①接触;②形变。但物体的形变不能超过弹性限度。
(3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)
(4)大小:
①弹簧的弹力大小由F=kx计算
②一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定
4、摩擦力:
(1)摩擦力产生的条件:接触面粗糙、有弹力作用、有相对运动(或相对运动趋势),三者缺一不可
(2)摩擦力的方向:跟接触面相切,与相对运动或相对运动趋势方向相反,但注意摩擦力的方向和物体运动方向可能相同,也可能相反,还可能成任意角度。
(3)摩擦力的大小:
(4)注意事项:
a. 摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。
b. 摩擦力可以作正功,也可以作负功,还可以不作功。
c. 摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。
d. 静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。
易错现象:
1. 不会确定系统的重心位置
2. 没有掌握弹力、摩擦力有无的判定方法
3. 静摩擦力方向的确定错误
六、力的合成和分解
1、标量和矢量:
(1)将物理量区分为矢量和标量体现了用分类方法研究物理问题。
(2)矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。
(3)同一直线上矢量的合成可转为代数法,即规定某一方向为正方向,与正方向相同的物理量用正号代人,相反的用负号代人,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样,但不能认为是矢量,最后结果的正负也不表示方向,如:功、重力势能、电势能、电势等。
2、力的合成与分解:
(1)合力与分力
(2)共点力的合成:
1、共点力
几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。
2、力的合成方法