首页 > 试卷 > 教材同步 > 高三试卷

苏教2019高中数学选择性必修第二册第8章概率知识点清单

苏教2019高中数学选择性必修第二册第8章概率知识点清单,以下展示关于苏教2019高中数学选择性必修第二册第8章概率知识点清单的相关内容节选,更多内容请多关注我们

苏教2019高中数学选择性必修第二册第8章概率知识点清单

1、苏教版2019版高中数学选择性必修第二册第8章概率知识点清单目录第8章概率8. 1条件概率8. 2离散型随机变量及其分布列8. 3正态分布第 25 页 共 25 页第8章概率8. 1条件概率8. 1. 1条件概率一、条件概率1. 一般地,设A,B为两个事件,P(A)0,我们称P(AB)P(A)为事件A发生的条件下事件B发生的条件概率,记为P(B|A),读作“A发生的条件下B发生的概率”,即P(B|A)=P(AB)P(A) (P(A)0). 二、概率的乘法公式1. 由条件概率公式可知P(AB)=P(B|A)P(A). 说明:假设Ai表示事件,i=1,2,3,且P(Ai)0,P(A1A2)0,则P

2、(A1A2A3)=P(A1)P(A2|A1)P(A3|A1A2),其中P(A3|A1A2)表示已知A1与A2都发生时A3发生的概率,而P(A1A2A3)表示A1,A2,A3同时发生的概率. 三、条件概率的性质(1)P(|A)=1(为样本空间);(2)P(|A)=0;(3)若B1,B2互斥,则P(B1+B2)|A)=P(B1|A)+P(B2|A). 四、条件概率的计算方法1. 计算条件概率的方法一般有两种(1)利用定义计算,先分别计算概率P(AB)和P(A),然后代入公式P(B|A)= P(AB)P(A)计算. (2)利用缩小样本空间法计算(局限在古典概型内),即P(B|A)= n(AB)n(A

3、). 五、求较复杂事件的概率1. 当所求事件的概率比较复杂时,往往把该事件分成两个(或多个)互斥的较简单的事件,求出这些简单事件的概率,再利用公式便可求得较复杂事件的概率. 2. 求较复杂事件的概率的一般步骤(1)列出题中涉及的各个事件,并且用适当的符号表示;(2)厘清事件之间的关系(两个事件是互斥事件还是对立事件),列出关系式;(3)根据事件之间的关系准确选取概率公式进行计算;(4)当直接计算符合条件的事件的概率较复杂时,可先间接计算其对立事件的概率,再求出符合条件的事件的概率. 六、乘法公式及其应用1. 乘法公式的特点及注意事项(1)知二求一:若P(A)0,P(B)0,则已知P(A),P(

4、B|A),P(AB)中的两个值就可以求得第三个值;已知P(B),P(A|B),P(BA)中的两个值就可以求得第三个值. (2)P(B)与P(B|A)的区别在于两者发生的条件不同,它们是两个不同的概念,在数值上一般也不同. 8. 1. 2全概率公式8. 1. 3贝叶斯公式*一、全概率公式1. 一般地,若事件A1,A2,An两两互斥,且它们的和i=1n Ai=,P(Ai)0,i=1,2,3,n,则对于中的任意事件B,有P(B)= i=1n P(Ai)P(B|Ai). 这个公式称为全概率公式. 二、贝叶斯公式1. 一般地,若事件A1,A2,An两两互斥,且A1A2An=,P(Ai)0,i=1,2,n

5、,则对于中的任意事件B,P(B)0,有P(Ai|B)P(B)=P(B|Ai)P(Ai). 因此P(Ai|B)=P(Ai)P(B|Ai)P(B). 再由全概率公式得P(Ai|B)= P(Ai)P(B|Ai)i=1n P(Ai)P(B|Ai). 这个公式称为贝叶斯公式. 2. 特别地,当0P(A)0时,有P(A|B)= P(A)P(B|A)P(B)=P(A)P(B|A)P(A)P(B|A)+P(A)P(B|A). 三、全概率公式及其应用1. 全概率公式的意义在于,当直接计算事件B发生的概率P(B)较为困难时,可以先找到样本空间的一个划分=A1A2An,A1,A2,An两两互斥,将A1,A2,An看

6、成是导致B发生的一组原因,这样事件B就被分解成了n个部分,分别计算P(B|A1),P(B|A2),P(B|An),再利用全概率公式求解. 2. 运用全概率公式计算事件B发生的概率P(B)时,一般步骤如下:(1)求划分后的每个小事件的概率,即P(Ai), i =1,2,n;(2)求每个小事件发生的条件下,事件B发生的概率,即P(B|Ai), i =1,2,n;(3)利用全概率公式计算P(B),即P(B)= i=1n P(Ai)P(B|Ai). 四、贝叶斯公式及其应用1. 贝叶斯公式是在条件概率的基础上寻找事件发生的原因,在运用贝叶斯公式时,一般已知和未知的条件如下:(1)A的多种情况中到底哪种情

11.真核细胞内染色体外环状DNA(eccDNA)是游离于染色体基因组外的DNA。某eccDNA分子DNA(eccNNA)中含有1200个碱基对,其中一条链上C+G所占的比例为60%。下列叙述错误的是A.该eccDNA彻底水解可得到5种有机产物B.该eceleceDNANA比染色体上的DNA更易发生复制和转录C.该eccDNA连续复制3次,会消耗3360个腺嘌呤脱氧核苷酸4^1200D.若该ecc)NA中的1200个碱基对重新随机排列,可能的排列方式有种

1、苏教版2019版高中数学选择性必修第二册第8章概率知识点清单目录第8章概率8. 1条件概率8. 2离散型随机变量及其分布列8. 3正态分布第 25 页 共 25 页第8章概率8. 1条件概率8. 1. 1条件概率一、条件概率1. 一般地,设A,B为两个事件,P(A)0,我们称P(AB)P(A)为事件A发生的条件下事件B发生的条件概率,记为P(B|A),读作“A发生的条件下B发生的概率”,即P(B|A)=P(AB)P(A) (P(A)0). 二、概率的乘法公式1. 由条件概率公式可知P(AB)=P(B|A)P(A). 说明:假设Ai表示事件,i=1,2,3,且P(Ai)0,P(A1A2)0,则P

2、(A1A2A3)=P(A1)P(A2|A1)P(A3|A1A2),其中P(A3|A1A2)表示已知A1与A2都发生时A3发生的概率,而P(A1A2A3)表示A1,A2,A3同时发生的概率. 三、条件概率的性质(1)P(|A)=1(为样本空间);(2)P(|A)=0;(3)若B1,B2互斥,则P(B1+B2)|A)=P(B1|A)+P(B2|A). 四、条件概率的计算方法1. 计算条件概率的方法一般有两种(1)利用定义计算,先分别计算概率P(AB)和P(A),然后代入公式P(B|A)= P(AB)P(A)计算. (2)利用缩小样本空间法计算(局限在古典概型内),即P(B|A)= n(AB)n(A

3、). 五、求较复杂事件的概率1. 当所求事件的概率比较复杂时,往往把该事件分成两个(或多个)互斥的较简单的事件,求出这些简单事件的概率,再利用公式便可求得较复杂事件的概率. 2. 求较复杂事件的概率的一般步骤(1)列出题中涉及的各个事件,并且用适当的符号表示;(2)厘清事件之间的关系(两个事件是互斥事件还是对立事件),列出关系式;(3)根据事件之间的关系准确选取概率公式进行计算;(4)当直接计算符合条件的事件的概率较复杂时,可先间接计算其对立事件的概率,再求出符合条件的事件的概率. 六、乘法公式及其应用1. 乘法公式的特点及注意事项(1)知二求一:若P(A)0,P(B)0,则已知P(A),P(

4、B|A),P(AB)中的两个值就可以求得第三个值;已知P(B),P(A|B),P(BA)中的两个值就可以求得第三个值. (2)P(B)与P(B|A)的区别在于两者发生的条件不同,它们是两个不同的概念,在数值上一般也不同. 8. 1. 2全概率公式8. 1. 3贝叶斯公式*一、全概率公式1. 一般地,若事件A1,A2,An两两互斥,且它们的和i=1n Ai=,P(Ai)0,i=1,2,3,n,则对于中的任意事件B,有P(B)= i=1n P(Ai)P(B|Ai). 这个公式称为全概率公式. 二、贝叶斯公式1. 一般地,若事件A1,A2,An两两互斥,且A1A2An=,P(Ai)0,i=1,2,n

5、,则对于中的任意事件B,P(B)0,有P(Ai|B)P(B)=P(B|Ai)P(Ai). 因此P(Ai|B)=P(Ai)P(B|Ai)P(B). 再由全概率公式得P(Ai|B)= P(Ai)P(B|Ai)i=1n P(Ai)P(B|Ai). 这个公式称为贝叶斯公式. 2. 特别地,当0P(A)0时,有P(A|B)= P(A)P(B|A)P(B)=P(A)P(B|A)P(A)P(B|A)+P(A)P(B|A). 三、全概率公式及其应用1. 全概率公式的意义在于,当直接计算事件B发生的概率P(B)较为困难时,可以先找到样本空间的一个划分=A1A2An,A1,A2,An两两互斥,将A1,A2,An看

6、成是导致B发生的一组原因,这样事件B就被分解成了n个部分,分别计算P(B|A1),P(B|A2),P(B|An),再利用全概率公式求解. 2. 运用全概率公式计算事件B发生的概率P(B)时,一般步骤如下:(1)求划分后的每个小事件的概率,即P(Ai), i =1,2,n;(2)求每个小事件发生的条件下,事件B发生的概率,即P(B|Ai), i =1,2,n;(3)利用全概率公式计算P(B),即P(B)= i=1n P(Ai)P(B|Ai). 四、贝叶斯公式及其应用1. 贝叶斯公式是在条件概率的基础上寻找事件发生的原因,在运用贝叶斯公式时,一般已知和未知的条件如下:(1)A的多种情况中到底哪种情

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/shijuan/jctb/gs/154070.html

[!--temp.pl--]