2019届高三文科数学(一) 衡水金卷先享题 调研卷
1、sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程
因为
sin(α+β)=sin αcos β+cos αsin β,
sin(α-β)=sin αcos β-cos αsin β,
将以上两式的左右两边分别相加,得
sin(α+β)+sin(α-β)=2sin αcos β,
设 α+β=θ,α-β=φ
那么α=(θ+φ)/2,β=(θ-φ)/2
把α,β的值代入,即得
sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
2、根据欧拉公式,e ^Ix=cosx+isinx
令x=a+b
得e^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb+sinbcosa)=cos(a+b)+isin(a+b)
所以cos(a+b)=cosacosb-sinasinb
sin(a+b)=sinacosb+sinbcosa
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/shijuan/tongyongshijuan/diaoyan/15719.html