2024年(新高考)高考数学一轮复习突破练习10.2《排列与组合》(含详解),以下展示关于2024年(新高考)高考数学一轮复习突破练习10.2《排列与组合》(含详解)的相关内容节选,更多内容请多关注我们
1、2024年(新高考)高考数学一轮复习突破练习10.2排列与组合一、选择题某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为()A.16 B.18 C.24 D.322018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有( )A.18种 B.24种 C.48种 D.36种从正方体六个面的对角线中任取两条作为
2、一对,其中所成的角为60的共有( )A.24对 B.30对 C.48对 D.60对将7个人(其中包括甲、乙、丙、丁4人)排成一排,若甲不能在排头,乙不能在排尾,丙、丁两人必须相邻,则不同的排法共有( )A.1 108种 B.1 008种 C.960种 D.504种甲、乙、丙、丁四位同学高考之后计划去A、B、C三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A社区,乙不去B社区,则不同的安排方法种数为( )A.8 B.7 C.6 D.5将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有( )A.480种 B.360种 C.240种 D.120种在
3、某市记者招待会上,需要接受本市甲、乙两家电视台记者的提问,两家电视台均有记者5人,主持人需要从这10名记者中选出4名记者提问,且这4人中,既有甲电视台记者,又有乙电视台记者,且甲电视台的记者不可以连续提问,则不同的提问方式的种数为()A.1 200 B.2 400 C.3 000 D.3 600某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生A和B都不是第一个出场,B不是最后一个出场”的前提下,学生C第一个出场的概率为()A. B. C. D.互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,先要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,
4、共有摆放方法( )A.A种 B.A种 C.AA种 D.CCAA种某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有( )A.900种 B.600种 C.300种 D.150种我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼15”飞机准备着舰,规定乙机不能最先着舰,且丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为( )A.24 B.36 C.48 D.96某人设计一项单人游戏,规则如下:先将一棋子放在如图所示的正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形
5、的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有( )A.22种 B.24种 C.25种 D.36种二、填空题现有2个红球、3个黄球、4个白球,同色球不加区分,将这9个球排成一列,有 种不同的方法.(用数字作答)现将5张连号的电影票分给甲、乙等5个人,每人一张,若甲、乙分得的电影票连号,则共有 种不同的分法.(用数字作答)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有1名女生,共有 种不同的选法.某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有 种.答案详解一、选择题答案为:C;解析:将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的
10.义和团运动兴起后,英国担心其波及自己的势力范围,策动两江总督刘坤一、湖广总督张之洞等与列强合作。6月21日,慈禧太后做出向各国“宣战”决定,6月26日,由盛宣怀从中牵线策划,上海道台余联沅与各国驻沪领事商定了“保护东南章程九款”。这表明A.地方势力的削弱B.清政府统治根基动摇C.列强势力的强大D.东南各省已实现独立
1、2024年(新高考)高考数学一轮复习突破练习10.2排列与组合一、选择题某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为()A.16 B.18 C.24 D.322018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有( )A.18种 B.24种 C.48种 D.36种从正方体六个面的对角线中任取两条作为
2、一对,其中所成的角为60的共有( )A.24对 B.30对 C.48对 D.60对将7个人(其中包括甲、乙、丙、丁4人)排成一排,若甲不能在排头,乙不能在排尾,丙、丁两人必须相邻,则不同的排法共有( )A.1 108种 B.1 008种 C.960种 D.504种甲、乙、丙、丁四位同学高考之后计划去A、B、C三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A社区,乙不去B社区,则不同的安排方法种数为( )A.8 B.7 C.6 D.5将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有( )A.480种 B.360种 C.240种 D.120种在
3、某市记者招待会上,需要接受本市甲、乙两家电视台记者的提问,两家电视台均有记者5人,主持人需要从这10名记者中选出4名记者提问,且这4人中,既有甲电视台记者,又有乙电视台记者,且甲电视台的记者不可以连续提问,则不同的提问方式的种数为()A.1 200 B.2 400 C.3 000 D.3 600某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生A和B都不是第一个出场,B不是最后一个出场”的前提下,学生C第一个出场的概率为()A. B. C. D.互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,先要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,
4、共有摆放方法( )A.A种 B.A种 C.AA种 D.CCAA种某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有( )A.900种 B.600种 C.300种 D.150种我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼15”飞机准备着舰,规定乙机不能最先着舰,且丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为( )A.24 B.36 C.48 D.96某人设计一项单人游戏,规则如下:先将一棋子放在如图所示的正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形
5、的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有( )A.22种 B.24种 C.25种 D.36种二、填空题现有2个红球、3个黄球、4个白球,同色球不加区分,将这9个球排成一列,有 种不同的方法.(用数字作答)现将5张连号的电影票分给甲、乙等5个人,每人一张,若甲、乙分得的电影票连号,则共有 种不同的分法.(用数字作答)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有1名女生,共有 种不同的选法.某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有 种.答案详解一、选择题答案为:C;解析:将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的