导数-2020届浙江省高三优质数学试卷分项解析
第三章 导数 1.从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等. 2.浙江省恢复对导数的考查后,已连续三年将导数应用问题设计为压轴题,同时在小题中也加以考查,难度控制在中等以上.特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查生灵活应用数知识分析问题、解决问题的能力. 3.常见题型,选择题、解答题各一道,难度基本稳定在中等以上. 一.选择题 1.(2019·浙江省高三月考),,且,则下列结论正确的是( ) A. B. C. D. 【答案】D 【汇总】 构造形式,则,时导函数,单调递增;时导函数,单调递减.又 为偶函数,根据单调性和对称性可知选D.故本小题选D. 2.(2019年9月浙江省嘉兴市高三测试)已知,关于的不等式在时恒成立,则当取得最大值时,的取值范围为( ) A. B. C. D 压缩包中的资料: 专题3 导数(汇总版).doc 专题3 导数(原卷版).doc
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/shijuan/jctb/gs/71683.html