浙江四校2024学年高二第一学期10月联考英语试题及答案
浙江四校2024学年高二第一学期10月联考英语试题及答案,答案汇总网收集关于浙江四校2024学年高二第一学期10月联考英语试题及答案的相关科目试卷及其答案,更多其他试卷答案请关注本网站!
22.解:(1)设点M的极坐标为(p,),则p=√2,代入直线l的极坐标方程,可得cos(0-x)=1,因为0∈[0,2x),所以日=号,所以点M的极坐标为(,)(2)把圆C的方程化为普通方程得:(x-1)2+(y-2)=4,圆心C(1,2),半径为2,把直线l的方程化为直角坐标方程得:x+y-2=0,如图,设圆心C到直线l的距离为d,则d=1+2-2√2√2设原点O到直线l的距离为d',则d=10+0-2=,√14AB|P-a4-2-2所以AB=√4,所以四边形OACB的面积:S=1AB1·(d+d)=12×√142+2)=37√2
22.解:(1)由直线1的参数方程(t为参数),消去参数1,可得其普通方程为y=一√3(x一1),2分20由曲线C的极坐标方程p2=4cos5nco5sin-20.将x=pcos0,y=psin0代入,得4x2+5y2=20,即南线C的直角全标方程为号+号-1.……-5分(2)将直线L的参数方程代入到曲线C的直角坐标方程,化简,得192一16t一64=0,由4=(-16)2+4×19×64>0,且4+2=841=-0e011664227分得1MN1=14-2l=√白+a-√8-4x(哥-=10分
[db:内容1]版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/xuexifangfa/wendang/243744.html